Design Automation for Cryptography

Anupam Chattopadhyay

Assistant Professor, School of Computer Science and Engineering School of Physical and Mathematical Sciences, Nanyang Technological University June 7, 2017

Motivation

- Security not a feature but a design metric
- Crytography is highly dynamic

Cryptanalysis

Custom cryptanalysis]

Lightweight cryptography

Timeline of cryptgraphic competitions

Motivation

• Design metrics

• Security kerenels developer has a huge design space

Contents

Custom Optimization Examples

- Domain-specific High Level Synthesis
- Fault-resistant Design by Physical Synthesis

HC-128: Parallelization by State Splitting

A. Khalid, et al. One Word/Cycle HC-128 Accelerator via State-Splitting Optimization, in INDOCRYPT 2014

HC-128: Parallelization by State Splitting

Docion	Clock Freq.	Со	re area (KGE)			Total Area				
Design	(GHz)	Comb.	Sequential	Total	Organization		(Bytes)		(KGE)	(KGE)
Design1	1.20	5.47	1.64	5.55	2x512		4096		53.22	58.77
Design2	1.30	9.63	1.38	8.60	4x256		4096		72.56	81.16
Design3	1.35	16.24	1.17	13.61	8x128		4096		110.4	124.01
Docion	Clock Freq.	Initialization latency			Throughput			TP	A (Gbps,	/KGE) with
(GHz)		(cycles)	(ms)	(cycl	(cycles/word)		(Gbps)		re Area	Total Area
Design1	1.20	9168	7.64		4		9.60		1.73	0.16
Design2	1.30	4584	3.53		2		20.80		2.42	0.26
Design3	1.35	3556	2.63		1	43.20		3.18		0.35

AES: Technology Mapping

- The AES MixColumns: matrix multiplication operation of the AES state byte matrix by a constant matrix given by

 [2 3 1 1]
 - $\begin{array}{c}2&3&1&1\\1&2&3&1\\1&1&2&3\\3&1&1&2\end{array}$
- The smallest circuit in literature requires **108 XOR gates** to implement this.
 - This function is four instances of the following equation over :
 - \rightarrow 41 LUTs using the LUT6 FPGA technology.

 $p = 2 \cdot a \oplus 3 \cdot b \oplus c \oplus d$

- Instead, we view the operation as a Boolean function rather than over and we optimize it towards an implementation of **36 LUTs**.
- Inverse MixColumns similarly can be reduced from 72 to 60 LUTs.

FPGA-Aware Pipelining

Logic-aware Partitioning

FPGA-aware Partitioning

Joint work with Mustafa Khairallah and Thomas Peyrin, unpublished

High-Level Synthesis

Focuses on algorithm to RTL flow

- × Dependent on user proficiency, varies widely from tool to tool
- × Unaware of technology platforms
- × Hard to reuse design knowledge
- × Storage allocation optimizations missing

Domain-specialization?

Berkeley Dwarfs for Parallel Computing^[1]

• How apps relate to 13 dwarfs (Red Hot \rightarrow Blue Cool)

	Embed	SHEC	8	Games	z	Ĥ	Healthmag&peecMusi&row	/\$
1 Finite State N	lac	h.						
2Combination	al							
3 Graph Traver	sa							
4 Structured G	r <mark>id</mark>							
5 Dense Matrix								
6 Sparse Matrix	<mark>د</mark>							
7 Spectral (FFT	·)							
8 Dynamic Prog	9 <u> </u>							
9N-Body								
10MapReduce								
11Backtrack/ B&	<u>яв</u>							
12Graphical Mo	de	ls						
13Unstructured	G	rid						

[1] The Landscape of Parallel Computing Research: A View from Berkeley, by K. Asanovic et al , Technical Report, 2006

SoC Processing Elements

NANYANG TECHNOLOGICAL UNIVERSITY

Source: T. Noll, RWTH Aachen

Domain-specific High Level Synthesis: Lessons from Wireless Communication IP

System Studio

Overview

System Studio is a high performance, model-based signal processing algori combines the industry's best simulation performance with high modeling efchip implementation design and verification flows. Leading communication Synopsys' System Studio and DSP model libraries to address their system-le faster. There is a good chance that your cell phone comes with a System St

Download Datasheet

Wireless Communications Design with MATLAB

Search

Wireless engineering teams use today's MATLAB[®] to reduce development time, from algorithm development through full system simulation and hardware implementation. These engineers save time and eliminate steps by:

- · Proving algorithm concepts in simulation and over-the-air tests
- Exploring and optimizing system behavior with models that include digital, RF, antenna elements
- Eliminating design problems before moving to implementation

Contents

Custom Optimization Examples

Domain-specific High Level Synthesis

• Fault-resistant Design by Physical Synthesis

CRYKET: Overview

- CRYKET (Cryptographic Kernels Toolkit): Domain specific HLS
 - Language independent GUI based design capture
 - Domain specific expertise, well understood kernels

A. Khalid, et al. RAPID-FeinSPN: A Rapid Prototyping Framework for Feistel and SPN-Based Block Ciphers. ICISS 2013

RunFein: Feistel and SPN Block Cipher

- Block/key/word sizes, rounds, mode of operation, test vectors
- Layers of operation: S/P-Box, Bitwise/ Arithmetic/Boolean/ Field operations, compound popular cipher operations

A. Khalid, et al. RunFein: A Rapid Prototyping Framework for Feistel and SPN Based Block Ciphers, JCEN 2016

RunFein: Fast Design Space Exploration

A. Khalid, et al. RunFein: A Rapid Prototyping Framework for Feistel and SPN Based Block Ciphers, JCEN 2016

RunFein: GUI

Basic Parameters	Operations	
Block Size 128 Multiple of 2 Word Size 8 I I Less than Block Round Start 1 Round End 10 Key Size 128 Microarchitecture Less than Pound	Size Initialization # of operations 1 Operation 1 AddRoundKey SBOX PBOX Rotate GaloisFieldMul ShiftRows Custom # of operation 2 ShiftRows Custom Find Operation 1 SBOX	Edit Save AES-128 0
Pipeline Between rounds Subpipeline Between ops Bit slicing 4 0 Word Length	Operation 1 Social (1) Operation 2 ShiftRows Operation 3 GaloisFieldMul Operation 4 AddRoundKey	
Cipher Modes Mode ECB Encryption IV 000000000000000000000000000000000000	Finalization # of operations 3 Operation 1 SBOX Operation 2 ShiftRows Operation 3 AddRoundKey Coperation 3 AddRoundKey Coperation 3 AddRoundKey Coperation 3 Coperation	CRIKET
Load Key File path Cipher Key 000000000000000000000000000000000000		8

RunFein: PRESENT-80 Bitslicing

	Area	(GE) Ru	ınFein	Area (GE) [1]				
(S_b)	65nm	90nm	180nm	180nm	250nm	350nm		
64	1649	1519	1751	1650	1594	1525		
32	1462	1379	1602	-	-	-		
16	1264	1203	1403	-	-	-		
8	1182	1121	1313			-		
4	1107	1081	1265	1075	1169	1000		

Faraday 65m Standard Cell library, typical case, Synopsys Design Compiler F-2011.09

RunStream: Analysis and Results

				Class	ificat	ion/C	Consti	ructio	n				Salie	ent Feat	tures		
	Synchronous	Additive	Binary	LFSR	CLFSR	NFSR	Jump Registers	FSM Registers	Irregular Clocking	Multiple Generators	Nonlinear Filter	Granularity (bits)	Key (bits)	IV (bits)	key setup (cycles)	Randomization (cycles)	Initialization (cycles)
A-5/1	~	V	V	~	×	×	×	×	~	~	X	1	64	22	86	100	186
A-5/2	~	~	~	~	×	×	×	×	~	~	~	1	64	22	86	100	186
E0	~	~	~	~	×	×	×	~	×	~	~	1	8-128	-	200	128	328
Grain80	~	~	~	~	×	~	×	×	×	~	~	1	80	64	160	160	320
Grain128	~	~	~	~	×	~	×	×	×	~	~	1	128	96	256	256	512
Grain128a	~	~	~	~	×	~	×	×	×	~	~	1	128	96	256	256	512
Trivium	~	~	~	~	×	×	×	×	×	~	×	1	80	80	288	1152	1440
MICKEY80-v2	~	~	~	×	×	~	~	×	~	~	×	1	80	80	160	100	260
MICKEY128	~	~	~	×	×	~	~	×	~	~	×	1	128	128	256	160	416
RC4	~	~	×	×	×	×	×	~	×	×	~	8	40-2K	-	256	256	512
ZUC	~	~	×	×	×	~	×	~	×	×	~	32	128	128	16	32	48
SNOW 3G	~	~	×	×	×	~	×	~	×	×	~	32	128	128	16	32	48

A. Khalid, et al. RunStream: A High-level Rapid Prototyping Framework for Stream Ciphers. In ACM TECS, 2016

Contents

- Custom Optimization Examples
- Domain-specific High Level Synthesis

Fault-resistant Design by Physical Synthesis

Preventing Differential Fault Analysis Attack

- Attacker assumptions
 - Ability to induce fault at a given time (T) and space (S) precision
 - Ability to infer/solve a system of equations based on the observed faulty (CT^*) and correct (CT) ciphertext

- Prevention
 - Redundancy, Concurrent Error Detection
 - Attack-specific mounted sensor

DFARPA: Differential Fault Attack Resistant Physical Design Automation

- Exemplary Fault Attack on AES¹
 - Multi-byte fault attack model
 - Fault is induced in at least one of the four diagonals in the AES state

D0	D1	D2	D3
D3	D0	D1	D2
D2	D3	D0	D1
D1	D2	D3	D0

• Solution: Generate floorplan for the 16 blocks, so that the fault become un-exploitable in presence of the fault cluster of radius *r* units

- Place the blocks(elements) of each diagonal at least r units distance
- Formulated as a constrained placement problem

1. D. Saha, D. Mukhopadhyay, and D. RoyChowdhury. A diagonal fault attack on the advanced encryption standard. Cryptology ePrint Archive, Report 2009/581, 2009. http://eprint.iacr.org/2009/581.

Joint work with Debdeep Mukhopadhyay and Shivam Bhasin, unpublished

DFARPA: Reactive Countermeasure

- The sensor is composed of two key components
 - a watchdog ring oscillator (WRO) and a phase detection (PD) circuit.
- High energy injections impact signal propagation delay, which disturbs the phase of WRO. This phase change is detected by the PD circuit to raise an alarm and halt sensitive computation.

• 2 Metal layers are reserved for WRO routing

Feature	Unprotected	Protected
Area (μm^2)	1293	1358~(5%)
Max. Path Delay (ns)	0.61	0.62~(1%)
Avg. Dynamic Power (μW)	259.26	551.5(212%)
Utilization Factor	0.6	0.6~(0%)

Table 4: Post-layout Results: Plantlet

Joint work with Debdeep Mukhopadhyay and Shivam Bhasin, unpublished

Contents

- Custom Optimization Examples
- Domain-specific High Level Synthesis
- Fault-resistant Design by Physical Synthesis

Conclusion and Outlook

- Conclusion
 - Domain-specific HLS can push the design efficiency and productivity
 - Different phases of EDA can integrate cryptographic/cryptanalyst knowhow to improve

- Outlook
 - Integrating (more) custom optimizations
 - Diverse technology/platform-specific constraints
 - Diverse cipher families
 - Integrating automated SCA and DFA protection

Thank you! *Questions?*

