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Motivation

Å Security not a feature but a design metric

Å Crytography is highly dynamic
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Motivation

Å Design metrics

Å Security kerenels developer has a huge design space

Variety of constraints
Area footprint, power

utilization, latency, operating
frequency, cost, ...

Variety of requirements
Throughput, security,  thermal

limitations, distribution,
scalability, flexibility, ...

Variety of target platforms
GPPs, DSP, GPUs,

ASICs, ASIPs, FPGAs,
CPLDs, Microcontrollers, ...

Architectural customization
Wordsize, instruction set,

Memory, microarchitectural
template, Interfaces, ...



Å Custom Optimization Examples

Å Domain-specific High Level Synthesis

Å Fault-resistant Design by Physical Synthesis
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HC- 128: Parallelization by State Splitting

Å P and Q has 512 words of 32-bit

Å 5 reads, 1 write

A. Khalid, et al. One Word/Cycle HC-128 Accelerator via State-Splitting Optimization, in INDOCRYPT 2014
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Design3: 4-way splitting
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HC- 128: Parallelization by State Splitting

Pipeline for Design3

Faraday 65m Standard Cell library, typical case



AES: Technology Mapping

ω The AES MixColumns: matrix multiplication operation of the AES state byte matrix by a 
constant matrix  given by

Å The smallest circuit in literature requires 108 XOR gates to implement this.

ÅThis function is four instances of the following equation over :

Ą 41 LUTsusing the LUT6 FPGA technology.

Å Instead, we view the operation as a Boolean function rather than over  and we optimize it 
towards an implementation of 36 LUTs.

Å Inverse MixColumns similarly can be reduced from 72 to 60 LUTs.

Joint work with Mustafa Khairallah and Thomas Peyrin, unpublished



FPGA - Aware Pipelining

Joint work with Mustafa Khairallah and Thomas Peyrin, unpublished

Logic-aware Partitioning FPGA-aware Partitioning



High - Level Synthesis

ÅFocuses on algorithm to RTL flow

× Dependent on user proficiency, varies widely from tool to tool

× Unaware of technology platforms

× Hard to reuse design knowledge

× Storage allocation optimizations missing

Domain-specialization?



Berkeley Dwarfs for Parallel Computing [1]

Å How apps relate to 13 dwarfs (Red Hot­ Blue Cool)

[1] The Landscape of Parallel Computing Research: A View from Berkeley,  by K. Asanovic et al , Technical Report, 2006
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Source: T. Noll, RWTH Aachen
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Domain - specific High Level Synthesis: Lessons 
from Wireless Communication IP



Å Custom Optimization Examples

Å Domain-specific High Level Synthesis

Å Fault-resistant Design by Physical Synthesis
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CRYKET: Overview

ÅCRYKET (Cryptographic Kernels Toolkit): Domain specific HLS 

ïLanguage independent GUI based design capture

ïDomain specific expertise, well understood kernels
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A. Khalid, et al. RAPID-FeinSPN: A Rapid Prototyping Framework for Feistel and SPN-Based Block Ciphers. ICISS 2013



RunFein: Feistel and SPN Block Cipher
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ÁBlock/key/word sizes, rounds, mode of operation, test vectors

ÁLayers of operation: S/P-Box, Bitwise/ Arithmetic/Boolean/ Field operations, 

compound popular cipher operations

A. Khalid, et al. RunFein: A Rapid Prototyping Framework for Feistel and SPN Based Block Ciphers, JCEN 2016
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RunFein: Fast Design Space Exploration
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A. Khalid, et al. RunFein: A Rapid Prototyping Framework for Feistel and SPN Based Block Ciphers, JCEN 2016



RunFein: GUI


