
Design Automation for Cryptography

Anupam Chattopadhyay

Assistant Professor, School of Computer Science and Engineering

School of Physical and Mathematical Sciences, Nanyang Technological University

June 7, 2017

Motivation

Å Security not a feature but a design metric

Å Crytography is highly dynamic

Cryptanalysis Custom cryptanalysis]
Lightweight cryptography

96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

AES eSTREAM

SHA-3NESSIE

CRYPTEC

15

Year

Block ciphers Stream ciphers Hash functions AE

PHC

CAESAR

All proposals

attacked !

42

35

59

24

58

ÁTimeline of cryptgraphic competitions

Motivation

Å Design metrics

Å Security kerenels developer has a huge design space

Variety of constraints
Area footprint, power

utilization, latency, operating
frequency, cost, ...

Variety of requirements
Throughput, security, thermal

limitations, distribution,
scalability, flexibility, ...

Variety of target platforms
GPPs, DSP, GPUs,

ASICs, ASIPs, FPGAs,
CPLDs, Microcontrollers, ...

Architectural customization
Wordsize, instruction set,

Memory, microarchitectural
template, Interfaces, ...

Å Custom Optimization Examples

Å Domain-specific High Level Synthesis

Å Fault-resistant Design by Physical Synthesis

Č

Contents

HC- 128: Parallelization by State Splitting

Å P and Q has 512 words of 32-bit

Å 5 reads, 1 write

A. Khalid, et al. One Word/Cycle HC-128 Accelerator via State-Splitting Optimization, in INDOCRYPT 2014

Design2: Even

odd splitting

P0 Q0

Update P &

Key Gen.P0 P1 Q0 Q1

P0 P1 P2 P3 Q0 Q1 Q2 Q3

Design3: 4-way splitting

Design1

HC- 128: Parallelization by State Splitting

Pipeline for Design3

Faraday 65m Standard Cell library, typical case

AES: Technology Mapping

ω The AES MixColumns: matrix multiplication operation of the AES state byte matrix by a
constant matrix given by

Å The smallest circuit in literature requires 108 XOR gates to implement this.

ÅThis function is four instances of the following equation over :

Ą 41 LUTsusing the LUT6 FPGA technology.

Å Instead, we view the operation as a Boolean function rather than over and we optimize it
towards an implementation of 36 LUTs.

Å Inverse MixColumns similarly can be reduced from 72 to 60 LUTs.

Joint work with Mustafa Khairallah and Thomas Peyrin, unpublished

FPGA - Aware Pipelining

Joint work with Mustafa Khairallah and Thomas Peyrin, unpublished

Logic-aware Partitioning FPGA-aware Partitioning

High - Level Synthesis

ÅFocuses on algorithm to RTL flow

× Dependent on user proficiency, varies widely from tool to tool

× Unaware of technology platforms

× Hard to reuse design knowledge

× Storage allocation optimizations missing

Domain-specialization?

Berkeley Dwarfs for Parallel Computing [1]

Å How apps relate to 13 dwarfs (Red Hot­ Blue Cool)

[1] The Landscape of Parallel Computing Research: A View from Berkeley, by K. Asanovic et al , Technical Report, 2006

Em
be

d

SP
EC

DB Ga
me

s

ML HP
C

HealthImageSpeechMusicBrowser

1Finite State Mach.

2Combinational

3Graph Traversal

4Structured Grid

5Dense Matrix

6Sparse Matrix

7Spectral (FFT)

8Dynamic Prog

9N-Body

10MapReduce

11Backtrack/ B&B

12Graphical Models

13Unstructured Grid

Source: T. Noll, RWTH Aachen

SoC Processing Elements

Configurable

Programmable

103 . . . 104

DSP
GPP

L
o

g

 P

 O
 W

 E
 R

 D

 I
 S

 S
 I
 P

 A
 T

 I
 O

 N

1
0

5
.
.
.
 1

0
6

Log P E R F O R M A N C E

L
o
g

F
 L

 E
 X

 I
 B

 I
 L

 I
 T

 Y

FPGA

ASIP

Domain - specific High Level Synthesis: Lessons
from Wireless Communication IP

Å Custom Optimization Examples

Å Domain-specific High Level Synthesis

Å Fault-resistant Design by Physical Synthesis

Č

Contents

CRYKET: Overview

ÅCRYKET (Cryptographic Kernels Toolkit): Domain specific HLS

ïLanguage independent GUI based design capture

ïDomain specific expertise, well understood kernels

Algorithmic
Specifications

Architectural
Specifications

Test
Vectors

CRYKET CRYKET
Library

Synth
Scripts

Test
Bench

Verilog
RTL

ANSI C
Model

Verification
Model

Logic
Synthesis

RTL
Simulation

System
Simulation

Software
Integration

System
Validation

A. Khalid, et al. RAPID-FeinSPN: A Rapid Prototyping Framework for Feistel and SPN-Based Block Ciphers. ICISS 2013

RunFein: Feistel and SPN Block Cipher

Plaintext

Rearrange

S1 S2 Sn...

P-Box

Key Register

Key Update

Key

Ki

Plaintext

Data Register

S1 S2 Sn...

Rearrange

Key Register

Key Update

Key

layer 0

layer 1

layer 2

layer 3

layer 4

layer 0

layer 1

layer 2

layer 3

ÁBlock/key/word sizes, rounds, mode of operation, test vectors

ÁLayers of operation: S/P-Box, Bitwise/ Arithmetic/Boolean/ Field operations,

compound popular cipher operations

A. Khalid, et al. RunFein: A Rapid Prototyping Framework for Feistel and SPN Based Block Ciphers, JCEN 2016

L Data R Data

Ki

GF Mul

Feistel Network cipher SPN Cipher

RunFein: Fast Design Space Exploration

N times unrolled

Loop folded

No Unrolling

Data Register

Round 1

Round 2

...

Round N

Plaintext

Data Register

Round 1

Plaintext

Sub-pipelined round

Data Register

Round 1a

Round 1b

Round 1c

Plaintext

Data Register

Data Register

Bit slicing

N times unrolled

with pipelining

Data Register

Round 1

...

Round N

Plaintext

Data Register

A. Khalid, et al. RunFein: A Rapid Prototyping Framework for Feistel and SPN Based Block Ciphers, JCEN 2016

RunFein: GUI

